Brushless DC Motor Controller

The UCC3626 motor controller device combines many of the functions required to design a high-performance, two- or four-quadrant, three-phase, brushless dc motor controller into one package. Rotor position inputs are decoded to provide six outputs that control an external power stage. A precision triangle oscillator and latched comparator provide PWM motor control in either voltage- or current-mode configurations. The oscillator is easily synchronized to an external master clock source via the SYNCH input. Additionally, a QUAD select input configures the chip to modulate either the low-side switches only, or both upper and lower switches, allowing the user to minimize switching losses in less demanding two-quadrant applications.

The device includes a differential current-sense amplifier and absolute-value circuit which provide an accurate reconstruction of motor current, useful for pulse-by-pulse overcurrent protection, as well as closing a current control loop. A precision tachometer is also provided for implementing closed-loop speed control. The TACH_OUT signal is a variable duty-cycle, frequency output, which can be used directly for digital control or filtered to provide an analog feedback signal. Other features include COAST, BRAKE, and DIR_IN commands, along with a direction output, DIR_OUT.Features

  • Two-Quadrant and Four-Quadrant Operation
  • Integrated Absolute Value Current Amplifier
  • Pulse-by-Pulse and Average Current Sensing
  • Accurate, Variable Duty-Cycle Tachometer Output
  • Trimmed Precision Reference
  • Precision Oscillator
  • Direction Outpu

Currently we work on BLDC Brushless DC motor controller with max 100Amps and voltage input form 24 up to 72volts. The controller is based on UCC3626 from Texas Instruments and I selected some LM5101 half-bridge driver chips also from Texas Instruments for this task.

The LM5100/LM5101 High Voltage Gate Drivers are designed to drive both the high side and the low side N-Channel MOSFETs in a synchronous buck or a half bridge configuration. The floating high-side driver is capable of operating with supply voltages up to 100V. The outputs are independently controlled with CMOS input thresholds (LM5100) or TTL input thresholds (LM5101).

An integrated high voltage diode is provided to charge the high side gate drive bootstrap capacitor. A robust level shifter operates at high speed while consuming low power and providing clean level transitions from the control logic to the high side gate driver. Under-voltage lockout is provided on both the low side and the high side power rails. This device is available in the standard SOIC-8 pin and the LLP-10 pin packages.

The MOSFET's are CSD19506KCS, 80V, 2mohm, 100AMPS, TO-220 package, designed to minimize losses in powder converion applications such as our Brushless DC motor controller for electrics scooters, e-bikes etc..

The LM78XX series of three terminal regulators is available with several fixed output voltages making them useful in a wide range of applications. One of these is local on card regulation, eliminating the distribution problems associated with single point regulation. The voltages available allow these regulators to be used in logic systems, instrumentation, HiFi, and other solid state electronic equipment. Although designed primarily as fixed voltage regulators these devices can be used with external components to obtain adjustable voltages and currents.

The LM78XX series is available in an aluminum TO-3 package which will allow over 1.0A load current if adequate heat sinking is provided. Current limiting is included to limit the peak output current to a safe value. Safe area protection for the output transistor is provided to limit internal power dissipation. If internal power dissipation becomes too high for the heat sinking provided, the thermal shutdown circuit takes over preventing the IC from overheating.

Considerable effort was expanded to make the LM78XX series of regulators easy to use and minimize the number of external components. It is not necessary to bypass the output, although this does improve transient response. Input bypassing is needed only if the regulator is located far from the filter capacitor of the power supply.

Download PCB Design UCC3626 Brushless DC Motor Controller (BLDC Controller) - Top

Download PCB Design UCC3626 Brushless DC Motor Controller (BLDC Controller) - Bottom

Source: ; alternative link: ; alternative link: ; alternative link :